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Abstract
The isothermal compressibility plays a central role in determining the
characteristics of the static response in plasma systems. In a charged particle
bilayer this role is assumed by Lij , the matrix of inverse compressibilities. For
weak coupling, the inverse compressibilities of a bilayer of charged particles
can be calculated analytically in the Debye limit from the equation of state
through the chemical potential. There are two different charging procedures
to obtain the latter. We present the results of a rather lengthy analytical
calculation, exploring both approaches. The limits of the validity of the Debye
description are discussed, and we compare the weak coupling results with Lij

values inferred from S(k→0) through the compressibility sum rule, where the
structure function S(k) is generated for strong coupling both through molecular
dynamics simulations and by HNC calculations.

PACS numbers: 51.35.+a, 51.30.+i

1. Introduction

Charged particle bilayers are remarkable physical systems with interesting static and
dynamic properties [1–6]. The intralayer and interlayer compressibilities play a key role in
determining the character of the static response and the screening properties (antiscreening and
overscreeening versus normal screening) of a bilayer system [7, 8]. While the compressibilities
can be derived in principle from the equation of state, they can also be deduced from the small
k behaviour of the static structure functions Sij (k). Whereas in an exact theory the two
approaches should provide identical results, in an approximate description of the system this
is not assured. In fact, consistency may be regarded as a useful check on the reliability of
a particular approach. For strongly coupled classical bilayers, compressibilities have been
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deduced from the static structure function S(k), this latter having been generated by HNC
calculations [9]. So far, however, no direct calculations from the equation of state have been
available. Here we calculate the compressibilities from a weak coupling equation of state,
established earlier in an exact Debye-like calculation [10]. We give a careful definition of the
bilayer compressibilities in terms of the chemical potential µ, derive two different charging
procedures that can be used for the calculation of µ, give a semi-analytic expression for
the compressibilities as a function of the coupling strength �, connect the results with the
strong coupling results and show the trend that is responsible for the anomalous screening
properties.

2. Compressibility calculations

The bilayer that we examine consists of two 2D layers of densities n1 and n2, separated by a
distance d. The partial density response functions are defined by

δni(k, ω) = χij (k, ω)�j (k, ω), (1)

where χij (k, ω) satisfies the compressibility sum rule

χij (k = 0, ω = 0) ≡ χij = χ0L
−1
ij (2)

and �i(k, ω) is the perturbing potential for layer i. Partial pressures do not constitute a useful
concept in layered systems. For the compressibility, one has to revert to the definition in terms
of the chemical potential. Then, the inverse compressibilities are

Lij = χ0
∂µi

∂nj

(3)

where µi is the chemical potential for layer i, and χ0 = −βn, for a classical system. The
chemical potential is derived from the free energy F:

µi = 1

V

∂

∂ni

{∑
m

F 0
m +

∑
m,n

Fmn

}

F 0
m = −V nmT log

(
ζ

T 3/2

n

)
, Fmn =

∫ 1

0
dλ

Emn(λe2)

λ
.

(4)

Charging parameter λ is associated with charge e2 and ζ is the chemical constant. Since the
correlation energy Emn is expressible in terms of the correlation functions hmn(r),

Emn = 1

2
V nmnn

∫
φmn(r)hmn(r) d3r, (5)

µ is expressible in terms of the integrals

Kmn =
∫ 1

0
dλ

∫
φmn(r)hmn(r; λe2) d3r. (6)

φ11(r) = φ22(r) = e2

r
and φ12(r) = e2(r2 + d2)−

1
2 . The elements of the L-matrix now become

Lij = δij + βn

{
Kij + n(K11,j + K12,j ) +

n2

2
(K11,ij + 2K12,ij + K22,ij )

}
(7)

where K11,i ≡ ∂
∂ni

K11, K11,ij ≡ ∂2

∂ni∂nj
K11 etc.
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Figure 1. L and L + N (L11 ≡ L,L12 ≡ N) as a function of κ̄ in the Debye approximation,
showing the d → 0 and d → ∞ limits.

Since the second-order derivatives are not convenient to work with numerically, an
alternative expression in terms of first derivatives has also been obtained:

µi = µ0
i + T log ni +

∑
nmGmi

Gmn =
∫ 1

0
dξ

∫
φmn(r)hmn(r; ξqn) d3r.

(8)

Here the charging parameter ξ [11] is associated with charge of species i, rather than with the
overall e2. The elements of the L-matrix now become

Lij = δij + βn
(
Gij +

∑
nGmi,j

)
. (9)

The equivalent of the Debye theory for a bilayer provides the Fourier transform of the
pair correlation functions [10]:

h11(k) = h22(k) = κ2 e−2kd − κ(k + κ)

(k + κ)2 − κ2 e−2kd
, h12(k) = −kκ e−kd

(k + κ)2 − κ2 e−2kd
. (10)

� = βe2/a and κ = 2πnβe2 are the coupling parameter and Debye wavelength respectively;
a is the lattice constant, so that κ̄ ≡ κa = 2�. Using these functions, µ can be calculated
via (7) and (9). In the first case, the

∫
dλ integrations can be performed explicitly in

k-space:

Kmn =
∫ 1

0
dλ

∫
φmn(r)hmn(r; λe2) dr = 1

4π2

∫ 1

0
dλ

∫
φmn(k)hmn(k; λe2) dk

=
∫ ∞

0
fmn(k, κ) dk; (11)

but the fmn functions are the furthest one can go analytically. Further calculations, such as the
1st and 2nd derivatives K11,i , K11,ij etc, can only be done numerically. One proceeds similarly
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Figure 2. (a) L11 ≡ L as a function of κ̄ in the Debye approximation. (b) L12 ≡ N as a function
of κ̄ in the Debye approximation. The solid straight lines indicate the HNC results.
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Figure 3. (a) L, N, L+N, L−N as a function of d̄ in the Debye approximation, for κ̄ = 0.05. The
right axis label applies to N . (b) L, N,L+N, L−N as a function of d̄ in the HNC approximation,
for � = 1.

with the functions Gmn. Figure 1 displays the calculated inverse compressibilities for weak
coupling. At the d → 0 and d → ∞ limits they display the expected behaviour, i.e.,

L + N
d→0−→ L2D(2n), L

d→∞−→ L2D(n), N
d→∞−→ 0. (12)

The results appear reliable for values of κ ≈ 0.1 or less (figure 2), where the behaviour of
L11 and L12 as a function of d mirrors the strong coupling behaviour derived from the HNC
approximation (figure 3).
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